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Methods based on the density matrix for calculating the time-dependent 
probability density of a quantum system approaching equilibrium are 
presented. Explicit expressions are derived for the time-dependent proba- 
bility density for a double-well potential. The effects of tunneling and 
transitions between energy levels on the probability density are discussed. 
For the case of closely spaced energy levels, a partial differential form of the 
density matrix equation is derived and used to calculate time-dependent 
probability densities. 
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1. I N T R O D U C T I O N  

The p robab i l i t y  dens i ty /5( r )  o f  a q u a n t u m  system at equi l ibr ium at t empera-  
ture T can be ca lcula ted  by solving the t ime- independen t  Schr6dinger  
equa t ion  for  the wave funct ions  4.(r)  and  the eigenvalues E~ and  then sum- 
ming the series 

P ( r )  = Q-~ ~ exp ( - e~ /kT)  ]~(r ) [  2 (1) 

where Q is the par i t ion  funct ion and  k is Bo l t zmann ' s  constant .  I f  the quan-  
t um system does no t  in teract  s t rongly  with its surroundings ,  the equi l ib r ium 
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probability density depends only on the properties of the system. On the 
other hand, the time-dependent probability density depends both on the 
properties of the system and on the interaction potential between the system 
and its surroundings. A practical method based on the density matrix for 
treating the interaction between a quantum system and its surroundings has 
been proposed by Redfield. (1,2~ It is the purpose of this paper to use a modi- 
fied form of Redfield's method to obtain the time-dependent probability 
density of a quantum system approaching equilibrium. The case of discrete 
energy levels will be treated first and an explicit expression for the time- 
dependent probability density for a double-well potential will be derived. 
Next the case of closely spaced energy levels will be studied, a partial dif- 
ferential equation for the time-dependent probability density will be derived, 
and explicit solutions will be given. 

2. D E N S I T Y  M A T R I X  E Q U A T I O N  FOR P R O B A B I L I T Y  D E N S I T Y  

Consider an ensemble whose members consist of a quantum system of 
interest surrounded by a temperature bath. ~1,2~ The Hamiltonian of the system 
Hs(r) and the Hamiltonian of the bath H~(R) are both considered to be time 
independent. There is a weak interaction between the system and the bath, 
represented by the time-independent interaction operator /ti(r, R). The 
variables r and R are the generalized coordinates of the system and bath, 
respectively. The total Hamiltonian for the combination of the system and 
bath is 

/J(r, R) = /~s(r) + /~,(R) + H~(r, R) (2) 

The eigenfunctions 6,(r) and ~iu(R) of the system and bath are given by 

/ts(r)4.(r) = E~ff.(r) (3) 

/1B(R)qb,u(R) : E~qbI~(R ) (4) 

where e, and Ey are the eigenvalues of the system and bath, respectively, and 
u is a degeneracy parameter. 

The wave function W(r, R, t) of each member of the ensemble varies 
with time according to the Schr6dinger equation 

ih ~q~(r, R, t)/~t = /l(r, R)T(r, R, t) (5) 

One can expand ~F(r, R, t) in terms of the wave functions ~,(r) and ~I~(R) : 

~F(r, R, t) = ~ ~ ~.. a,e~(t) exp[ -  i(, ,  + e,)t/hJ~(r)Cbi,(R ) (6) 
n f u 

Substituting Eq. (6) into Eq. (5), multiplying the result by 

exp[i(en' + E/)t/h]~*,(r)~*~,(R) 
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and integrating over all values of r and R, one finds that the coefficients of the 
expansion (6) vary with time according to the equation 

ih da~,:,u./dt = ~ ~ ~ a.:at exp[i(~. - e~ + E:, - E:)t/h] G.,:,u,~fat (7) 
n f at 

where 

= f f CJO~,u,H,r dr da (8) G n , f , u , n f  u ~ �9 

We are particularly interested in obtaining the ensemble-averaged prob- 
ability density P(r, t) of the system, where P(r, t) dr is the probability that a 
system of the ensemble has coordinates in dr at r at time t. To derive an 
expression for/5(r, t), we first multiply the wave function (6) by its complex 
conjugate and perform an ensemble average to obtain the probability distri- 
bution P(r, R, t) for the combination of system and bath: 
/5(r, R, t) = (l~F(r, R, t)[ 2) 

= E ~ ~ s ~ ~ (a~*1'at'a~ru)exp[i(e~,- e n + E i, - E,)t/h] 

x r162 O*at,(R) ~r,(R ) (9) 

where the brackets denote an ensemble average. Next, integrating Eq. (9) over 
the coordinates of the bath, we obtain 

t) = f P(r, R, t) P(r, dR 

= ~ ~ ~ ~ (a*,,ata.,u) exp[i(%' - e~)t/h]r162 (10) 
/~ n '  f at 

where use has been made of the orthonormality property of the wave 
functions @~(R). The total density matrix in the Heisenberg representation 
is defined as 

H P.r~'i'at" = (a*'i'at'a~at) (11) 

= P.I~.'s'at" exp[i(e. - e=, + Ef - Ez)t/h ] (12) 

where pn~,e,~, is the total density matrix in the Schr6dinger representation. 
In most applications, one is concerned with the properties of the system only, 
not the bath. For these cases it is convenient to use the reduced density 
matrix, which is defined as 

2 2  * ~r~., = (a~,s~a.ru) (13) 
f u 

= c~. exp[i(e~ - %')t/h] (14) 

where ~,/~ and c~, are the reduced density matrices of the system in the 
Heisenberg and Schr6dmger representations, respectively. Finally, combining 
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Eqs. (10), (13), and (14), we obtain an expression for the probability density 
of the system 

P(r, t) = ~ ~ a~..(t)~*,(r)~.(r) (15) 

Thus, a knowledge of a~, as a function of  time is all that is required to de- 
termine the time-dependent probability density. One can make use of the 
Hermitian property of  the reduced density matrix, 

(r~m = amn ( 1 6 )  

to derive a more convenient form of Eq. (15): 

if(r, t) = E crn"(t)[~"(r)]2 + 2 ~ ~ c o s  Ohm (17) 
n m > n  n 

where we have let 

~  = exp(i0  ) (18) 

and all the functions ~( r )  are to be taken as real without loss of generality. 
Redfield assumed that the interaction operator /~z(r, R) could be ex- 

pressed as the sum of products of operators involving the system or bath 
alone: 

/lz(r, R) = ~ Hbq(R)Lq(r) (19) 
q 

Substituting Eq. (19) into Eq. (8) yields 

G~,I,u, = ~ Hf~,I,~,L~,v (20) 
q 

where 
/. 

L~,  = J ~.*(r)Lq(r)q~n,(r) dr (21) 

~ f HT~;,~, = qb~(R)/tbq(R)qbi,~,(R) dR (22) 

He also assumed that the bath can be considered to remain in thermal 
equilibrium for all time so that the total density matrix could be expressed as 

P~y~n'~'~' = ~n~,p(o~f) ~H' 3~, (23) 

where 

p(oJ1) = [exp(-  hco,/kT)]/~ ~,, e x p ( -  h~i,/kT ) (24) 
f" u '  

and where o~y are the eigenvalues of the bath E I divided by h. Combining Eq. 
(7) with Eqs. (11)-(14) and (20)-(24) and using perturbation theory, Redfield 
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found that it was possible to calculate the rate of change of the reduced 
density matrix by the equation 

dc~.,ldt = ico~,.cr.~, + ~ ~ R.~,mm,Crmr~, (25) 
m rn" 

where the matrix R,n,m~, is called the relaxation matrix and its elements are 
given by 

Rnn,mrn,  = ~ - 2  ~ ~ {LqnmLqrs -t- jqq,(C%.m,)] 
q q" 

_ _  q q "  , ~nm ~, Lm',L,n,Jqq'(C~ exp( h~m,,/k T) 
Y 

-- ~n'm" ~, L qn,Lq'mJqq'(~ exp( h~~ T)} (26) 
Y 

where 

where ~u(V) is the density of  states and r = @ n  - -  E m ) / h "  It is impractical to 
evaluate jqq,(oJ) as defined by Eq. (27) except for a few restricted cases since 
the calculation requires a complete knowledge of all the eigenfunctions and 
eigenvalues of the bath. Redfield has indicated that Eq. (27) can be taken as 
approximately equal to 

1 / "  +oo 
jqq,(oo) = ~[exp(-  ho~/2kT)] j_ ~ (Aq(O)Aq'(t)) exp(ioJt) dt (28) 

where Aq(t) is a randomly varying function of time associated with the inter- 
action of the bath and the system and (Aq(O)Aq'(t)) is its correlation function. 

Some of the elements of  the relaxation matrix have physical significance. 
The terms R . . . .  are the probabilities of  transition of the system from state 
m to state n per unit time caused by interaction with the bath. It can be shown 
that the matrix elements R . . . .  satisfy the relation 

R . . . .  = R . . . .  exp(h~176 (29) 

so that the transition probability from m to n is related to that from n to m. 
It can be shown that 

R - < ~  = o ( 3 0 )  = .nnmmUmm 
rn 

where a([~ is the equilibrium density matrix 

dr) ~nm [exp(-  en/kT)l/~ e x p ( -  e~,/kT) (31) nm = 
n" 

One can also prove that 

R . . . .  : 0 ( 3 2 )  
rn 
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It has been suggested by Redfield that those elements Rnn,mm, of the relaxation 
matrix for which % - E,, r em - era" are in general ineffective in the relaxation 
process. This gives us the simplifying condition 

Rnn,mm, = 0 if % -- e~, r e m -- ~m" (33) 

3. P R O B A B I L I T Y  D E N S I T Y  FOR T U N N E L I N G  PROCESSES 

Studies of  the kinetics of  the tunneling process Y X  + Z - +  Y + XZ,  
where group Xis  transferred through a barrier from group Yto group Z, and 
where the distance between group Y and group Z is fixed, have been carried 
out by considering that group X is bound by a double-well potential having 
two minima separated by a barrier. Successful use of  the double-well poten- 
tial has been made in analyzing the tunneling of hydrogen-bonded protons 
between nucleotide base pairs in D N A  (a~ and in investigating the general 
problem of tunneling in hydrogen bondsJ 4~ Recently, the effects of  thermal 
vibrations on the kinetics of  the tunneling process have been studied by 
solving the time-dependent Schr6dinger equation for the double-well poten- 
tial in which a fluctuating potential was included. ~5~ In this section it will be 
shown that the density matrix equations discussed in the previous section can 
also be used to take into account the effects of  thermal vibrations on tunneling. 

We consider the case of  a particle in a double-well potential, which will 
be referred to as the system. The interaction of the surroundings on the 
system is taken to be a stochastic potential of  the form 

v(r, t) = A(t)L(r) (34) 

where A(t) is a fluctuating potential whose correlation coefficient is 
(A(O)A(t)). According to Eq. (28), the spectral density is 

j(oJ) = [ exp( -  hoJ/2kT)] (A(0)A(~-)) cos(m~-) dr (35) 

At time t = 0, we take the elements of  the density matrix to be 

C~m(0 ) = Q-1 e x p [ -  (e~ + em)/2kTl exp(iVnm) (36) 

where Q is the partition function 

Q = ~ e x p ( - ~ / k T )  (37) 
n 

and where the phases 7'~m determine the initial probability density. For ex- 
ample, for certain values of  ~'~m, the particle will be predominantly on one 
side of  the double-well potential at time t = 0. Since the density matrix is 
Hermitian, ~,,, = 0. 
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In this section we will neglect transitions between energy levels and 
consider only tunneling phenomena. The density matrix equations (25) then 
reduce to 

where 

d~nm[dt= i~mn~nmq- Rnmnm~nm 

R,~m,~m = - h-2(Lmm - L,.~)2j(O) 

j(O) = j i  ~ ( A ( O ) A ( z ) )  dz  

L~m = f L(r)[4,mm(r)] 2 dr 

Equation (38) has the solution 

anm(t) = Crnm(O) exp(iOamnt -- Dnmt) 

where 

(38) 

(39) 

(40) 

(41) 

(42) 

SO ~ 
D., .  = -Rnm. ,~ = h-2(Lm~ - L.,~) 2 (A(O)A(~'))  d~" (43) 

Combining Eqs. (17), (36), and (42), we obtain an expression for the 
ensembled-averaged probability density: 

if(r, t) = Q-1 ~ [~.(r)]2 exp(-E./kT) 

+ 2Q -1 ~ ~ ~bm(r)~,(r)exp[-(% + Em)/2kT] e x p ( - D , m t )  
m>• n 

• (COS 7ran COS O~mnt + sin 7m, sin o~m,t) (44) 

This probability distribution is in agreement with the one previously obtained 
by solving the Schr6dinger equation for a fluctuating potential and then 
performing an ensemble average/5~ As discussed previously, this result 
shows that at sufficiently low temperatures the ensemble-averaged probability 
that a particle is on one side of a double-well potential may exhibit damped 
oscillations. 

Equation (44) gives the probability density of a particle in a double-well 
potential as a function of time, but where transitions between energy levels 
have been neglected. Next, we will consider the effects of transitions. If the 
temperature is sufficiently low, the time dependence of the probability 
density can be determined by the two lowest energy eigenvalues of the system 
and their corresponding eigenfunctions. Making use of Eqs. (25), (26), (28), 
and (33), we obtain a coupled set of first-order ordinary differential equations 
with constant coefficients for the elements oil(t), e21(t), ~22(t) of the density 
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matrix.  Substi tuting the solution o f  the differential equat ion into Eq. (17) 
yields an expression for  the ensemble-averaged probabi l i ty  density: 

/5(r, t) = [~(r ) ]  9" Q -  1 e x p ( -  q/kT)  + [q~2(r)] 2 Q-Z e x p ( -  %[kT) 

+ {[$1(r)]2[~(0) _ Q-1 e x p ( - q / k T ) ]  

+ [$2(r)]2[~9.2(0)_ Q-1 exp(-c2/kT)]} e x p ( - A ~ t )  

+ 251(r)62(r)[%l(O)] e x p ( -  ;~2t) cos(72~ - co2~t) (45) 

where 

2,1 = 2(L12/h)2j(oJ21)[1 + exp(hco21/kT)] (46) 

•2 = h-2(L22 - Lll)2j(O) + (L12[h)2j(o~2z)[l + exp(hoJ21/kT)l (47) 

j(oO = [exp(h~/2kT)l (A(O)A(.)) cos(o~) dr (48) 

Here e~1(0) and %2(0) are the values of  the density matr ix  at t ime t = 0 and 
721 and ]e21(0)] are the phase  and absolute  value of  e21 at t = 0. 

I f  we let the initial condit ions be 

o1~(0) = Q-Z e x p ( - q / k T )  (49) 

e2~(0) = Q-1  e x p ( -  %/kT) (50) 

[%~(0) I = Q-Z e x p [ -  (El + %)/2kT] (51) 

and  consider the case where there are no transit ions (Lz2 = 0), then the 
probabi l i ty  density of  Eq. (45) reduces to that  o f  Eq. (44). Thus,  in this case, 
t ransi t ions give rise to an addit ional  decay te rm with decay constant  ,~ and 
result in an increase in the magni tude  of  the decay constant  A2 by the amoun t  
(L~2/h)2j(oJm)[1 + exp(hoJ2~/kT)]. 

4. P A R T I A L  D I F F E R E N T I A L  E Q U A T I O N S  

Consider  a system with an infinite number  of  closely spaced discrete 
energy levels %, q ,  %, ca,.... We assume that  transit ions can occur only 
between neighboring energy levels so that  

Lqnm = 0 for  n > m + 1 (52) 

and that  the elements Rnnmm , where n = m + 1, are of  the same magni tude:  

R . . . .  = D for  n = m + 1 (53) 

Condi t ion (52) implies that  

Rn,~m,, = 0  for  n > m + 1 (54) 
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According to Eqs. (25), (26), (29), and (52)-(54), the rate o f  change of  the 
on-diagonal  elements of  the density matr ix is given by 

where 

d~s~ldt = R . . . .  ~ _ ~ _ 1 ~ _ ~  + R ~ j ~  + Rs :~+~:+~+~+l  (55) 

R . . . .  12-1 = D (56) 

R~s  = - D[1 + exp(/3h~o~_l) ] (57) 

Rsvp+ ls+1 = D exp(/3h~%+ 1~) (58) 

fl = ( k T )  -~ (59) 

We now define functions o~(s) and ~(s, t) by the relations 

oJ(s) = oJ~+ is (60) 

~(s, t) = ~ ( t )  (61) 

and we will treat systems where these functions can be taken as cont inuous 
and differentiable. Expanding ~(s + 1, t), a ( s -  1, t), and c o ( s -  1) in a 
Taylor  series about  s, e.g., 

~ ( s )  1 e2~(s) 
cr(s + 1, t) = or(s) + ~ + ~ ~s----- ~ + ... (62) 

we obtain f rom Eq. (55) a partial differential equat ion for or(s, t) 

a~(s ,  t) 
&r(s, t) D -  + Dflh [~o(s);r(s, t)], /3 = ( k T )  -1 (63) 

~t ~s 2 

where we have used the conditions/3ho~ << 1 and/3h]&o/as[ << 1 and neglected 
higher order  terms. Using a similar procedure  for the s = 0 equation,  we 
obtain the boundary  condit ion 

a~(0, t) 
c~-----~ + phoJ(0)a(0, t) = 0 (64) 

At equilibrium, the elements o f  the density matr ix are 

es~ = Q-~ exp( - /3~)  (65) 

Since the energy levels are closely spaced, Eq. (60) gives us 

~o(s) = (E~+I - ~ ) /h  = (l/h)O,(s)/Os (66) 

Integrating Eq. (66) yields 

,(s) = h (~ ~o(s) ds (67) 
Jo 
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Therefore Eq. (65) becomes 

a(s) = Q-1 exp[ - f lh  o~(s) ds] (68) 

It is readily confirmed that Eq. (68) satisfies Eq. (63) when 8e/~t = O. 
Let us apply Eq. (63) to the case of a one-dimensional harmonic oscil- 

lator. Here oJ(s) = oJ, a constant, and the partial differential equation (63) 
becomes 

8~(s, t) 8% 8~ 
-~ = D-~-Bs 2 + Dflh~o ~ (69) 

We consider an ensemble of systems all of which are in state p at time t = 0. 
The elements of the density matrix at time t = 0 are 

CTrnn(O) = ~mp 8rip (70) 
According to condition (33), the differential equations (25) for the off- 
diagonal elements dam~/dt do not depend on the on-diagonal elements. 
Therefore, since all off-diagonal elements are zero at time t = 0, they will all 
be zero at any later time: 

amn(t ) = 0 if m # n (71) 

Thus for this case the behavior of the system is determined entirely by the 
on-diagonal elements. 

Applying a Laplace transform to Eq. (69) and using the boundary condi- 
tion (64) and the initial condition 

a(s, 0) = 3(s - p) (72) 

yields the solution 

a(s, t) = (4rrDt)- ~/2{exp[- (s + p)2/4Dt] + e x p [ -  (s - p)2/4Dt]} 

• exp[-(flhoJ/2)2Dt - (s -p)(fihoJ/2)] 

+ (/3ho~/2) exp(-s~ho~/2) 

x erfc[(s + p)(4Dt)-x/2 _ (Dt)l/2flh~o/2 ] (73) 

We wish to use Eq. (73) to obtain an expression for the ensemble- 
averaged probability density of a harmonic oscillator at large time. The 
asymptotic expansion of Eq. (73) at large time is 

~s ,  t) z/3hoJ exp(-/3hoJs) 

+ (p~ho) - 2)(/3h~o)- 2(r;D3t a)- 1/2 exp( - Dtfl 2 h%J2/4) 

x (sl3hoJ/2- 1 ) e x p [ ( p -  s)lghoJ/2] (74) 
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Since the off-diagonal elements of the density matrix are zero in this case, 
the ensemble-averaged probability density becomes 

/5(x, t) = ~ o(s, t)[~(x)] 2 (75) 
8 

where q~(x) are the wave functions for the one-dimensional harmonic 
oscillator. Substituting Eq. (74) into Eq. (75) yields 

P(x, t) z/3ho~S(x,/3) 
+ (pflhoJ - 2)(fih~o) - ~(~rDSt 3) - 1/2 [exp( -  Dtfi2h%J~/4)] 

x [exp(pfihoJ/2)] 

x ~ (s13ho~/2 - 1)[exp(-s/3hoJ/2)][4~(x)] 2 (76) 
8 

Where 

S(x,/3) = ~ [exp(-  sl3h~o)l[~(x)] 2 (77) 
S 

The quantity S(x ,  8) has been previously evaluated (6~ 

S(x ,  8) = (mw/2~rh)l/2[sinh(~hw)]- 112 exp(/3h~o/2) 

x e x p [ -  (x2mco/h) tanh(/3h~o/2)] (78) 

We note that the second sum in Eq. (76) is equal to S(x,/3/2) and the first 
sum is equal to 

aS(x,/3/2) = ~2 s~ho~ -s/3ho~ 
2 ep ~ ~ exp ~ [q~(x)] 2 (79) 

Making use of Eqs. (76)-(79) and the condition /3h~o << 1, we obtain an 
asymptotic solution for the ensemble-averaged probability density at large 
time 

P(x ,  t) • (/3mco2/2~r) 1/2 e x p ( -  x2~m~o2/2) 

+ (m/~rh2~)iI2[(p~hoo/2) - 1]U(x, t) (80) 

where 

U(x, t) = (4~rDat a)- 1/2 e x p ( -  Dt~2h%~2/4) 

x (x2/3m~o 2 - 2) e x p ( -  x2/3mo~2/4) (81) 

The second case that we consider involves a temperature change at time 
t = 0. For t < 0, we assume that the system is in thermal equilibrium at 
reciprocal temperature ~ = (kT')  -1, so that the on-diagonal elements at 
t = 0 are 

or(s, 0) = c~hoJ exp(-~ho~s) (82) 
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and the off-diagonal elements are all zero. As in Eq. (71), the off-diagonal 
elements will then remain zero for all time. Again using Laplace transforms 
yields 

(r(s, t) = (/3h~o/2) exp(-s/3ho)) er fc [ s (4Dt ) -1 /2  _ (Dt)ll2~ho~/2 ] 

+ ~hoJ exp(-s~h~o) exp[a(~ - fi)h%J2Dt] 

- (~h~o/2) exp(-sc~h~o) exp[~(~ - fi)h2oJ2Dt] 

x e r f c [ s (4Dt )  -112 + (�89 - ~)hro(Dt)  112] 

+ (c~ - p)(hw/2)exp[(~ - B)hoJs + a(c~ - p)h%~2Ot] 

x e r f c [ s ( 4 a t )  -1/2 = (�89 - ~)hoJ(Dt)  1/2] (83) 

Repeating the procedure used to derive Eq. (80), we obtain another asymp- 
totic solution for the ensemble-averaged probability density at large time 

P(x,  t) ~ (/3m~o2/2~) 1/2 exp(-x2~mo~2/2) 

+ (m/zrh2[3)l/2~([3 - ~)(~ - } t 3 ) -2U(x ,  t) ,  ~ > fl (84) 

where U(x ,  t)  is given by Eq. (81). 
In summary, methods based on the density matrix have been given for 

calculating the ensemble-averaged probability density as a function of time 
for a quantum system approaching equilibrium. Expressions for the time- 
dependent probability density have been derived for a particle in a double- 
well potential, and the processes of tunneling and transitions between energy 
levels have been studied. In addition, where the energy levels of a quantum 
system are closely spaced, a partial differential form of the density matrix 
equation has been derived, and exact and asymptotic solutions for the 
density matrix and probability density have been obtained. 
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